Model GTA 50-10 recently redesigned.

THE MOST ADVANCED NET MACHINES IN THE WORLD

Second Generation

AMITA
Model GTA 20mm to 50mm pitch
nylon and polyethylene twine

Our 2nd generation Model GTA net machine was masterfully designed to obtain greater levels of:

Stability! Flexibility! Ease of use!

Our Model GTA net machines have been designed to knit netting of heavy grade polyethylene or nylon twine for use to make trawling nets. Heavy-duty materials and components are used throughout the Model GTA to insure the required strength for knitting heavy netting. Furthermore, various measures were taken to eliminate vibrations during operation. With its large bobbin capacity, machine operation downtime for bobbin replacement is shortened, resulting in higher operating efficiency and productivity.

The design of our 2nd generation Model GTA net machines incorporate net manufacturers’ operational suggestions, resulting in machines that are easier than ever to operate and possess increased mechanical strength. Additionally, the twine range of the 2nd generation Model GTA is more comprehensive and flexible than earlier models.

All major parts have been expertly crafted through the use of the latest technology making them highly durable. Amita has much experience in this type of manufacturing process. Something that our competitors cannot claim. The primary design is monitored with the aid of a Computer Aided Design (CAD) system. A Computer Numerical Control (CNC) machine is used to finish the initial process of manufacturing.

With this type of technology Amita is able to continue to evolve with the demands of the netting industry to produce ever better machines. In fact, recently our Model GTA net machines with weft bobbins of 500mm diameter were redesigned for increased stability and durability when knitting very heavy and stiff twines across their entire width.

The GTA series of net machines is only one example of Amita’s commitment to excellence. We are sure that you will agree. Please contact us for more details or on how you can invest in one of these machines for yourself.

Amita is more than net machines. Amita can provide machines for every stage of net manufacturing. Furthermore, we can even supply you with a general plan regarding factory layout, and a wealth of information as it relates to the world’s net manufacturing industry.

NEW 30mm pitch GTA capable of both SINGLE and DOUBLE knot now available!

Easy adjustment
• control panel
 mesh size
 incremental mesh size
 automatic marker
 warp supply
• hydraulic generator
 knot tightening brake
 lifting warp roller
• end covers
• automatic stop
High productivity
- servo motor system
- large bobbin diameter
- single / double twine
- open-type shuttle

Low vibration
- frame structure
- lower hook frame
- knot tightening pipe
- shuttle support

Twine Range

PE braided cord *(Red = double cord, Blue = single cord):*

<table>
<thead>
<tr>
<th>Model</th>
<th>GTA 50-10</th>
<th>GTA 40-12</th>
<th>GTA 30-10</th>
<th>GTA 25-20</th>
<th>GTA 20-25</th>
</tr>
</thead>
<tbody>
<tr>
<td>cord dia.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>GTA 50-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GTA 40-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GTA 30-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GTA 25-20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GTA 20-25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nylon braided cord *(Red = double cord, Blue = single cord):*

<table>
<thead>
<tr>
<th>Model</th>
<th>GTA 50-10</th>
<th>GTA 40-12</th>
<th>GTA 30-10</th>
<th>GTA 25-20</th>
<th>GTA 20-25</th>
</tr>
</thead>
<tbody>
<tr>
<td>cord dia.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>GTA 50-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GTA 40-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GTA 30-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GTA 25-20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GTA 20-25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Model GTA type 50-10 shown.
Amita Model GTA net machines employ a Computer Numerical Control (CNC) servo motor system for the mesh forwarding device; the most important segment in deciding the net machine’s performance.

After more than ten years experience in use and improvements of this system, the current servo motor system has been modified to have the specific performance required by net machines.

Amita’s servo system can skillfully respond to the sophisticated development of resistant load that is characteristic with net machines. Under normal operation, it is completely trouble-free and reliable. The current system does not employ a battery nor a fan making it more durable than earlier models.

Digital input, via a keyboard, determines the exact mesh size.
- Instant setting of accurate mesh size eliminates the production loss normally associated with the conventional trial runs necessary to obtain correct mesh size.

High-torque, quick-response AC servo motor controls the mesh-forwarding function.
- AC motor is brushless and maintenance free. Its quick response insures optimal performance.

Automatic marking system.
- When knitting reaches the appointed pre-set count, two or three distinct “marking” meshes, either larger or smaller than normal size, are knit automatically. Afterwards, the counter resets and begins counting again.

Independent operation of the net forwarding system.
- Allows the bulky knot, caused by the joining of warp lines, to pass through the rollers, reed holes, and hooks without incident.

The servo motor systems also have the benefit of an RS 232C CPU interface.
- Using an RS 232C cable to connect an IBM based computer to the servo motor system greatly simplifies the process of entering, reviewing and changing the program parameters controlling the servo motor’s function. Furthermore, the RS 232C interface makes it possible to download the entire ROM program in ASCII format. The program can then be sent to our main office via Internet email (or facsimile) allowing our computer specialists to review it line-by-line. As a result, we can provide you with quicker and more thorough technical support.
Finite element method analysis

- The 2nd generation Model GTA net machines take advantage of ‘finite element method’ analysis to review components for structural integrity prior to production. After being designed using the most advanced CAD software, drawings undergo analysis for stress and weakness. Improvements to the original design are then made to minimize points of stress to insure smooth and proper function of all components. The life-span of components is also enhanced.

Cams

- To resist the increased levels of stress associated with with such large net machines, all the cams of our Model GTA have been made from nodular cast iron (JIS FCD500) containing spherical carbon, which is twice as strong as ordinary cast iron. In addition, all cam surfaces are hardened using a thermal treatment. Therefore, very high durability is achieved.

 Tensile strength: 50kgf/mm²
 Hardness: more than 50 (rockwell hardness)
 Surface finishing: machine grinding

Every cam is designed using the most advanced Computer Aided Design (CAD) software available to insure the optimal size and shape to minimize the driving load. Afterwards ‘finite element method analysis’ software is used to check the structural integrity of the components prior to production. The use of various software, in the designing stage, insures that original concepts are improved upon to minimize points of stress and guarantees smooth and proper function of all components. The life-span of components is also enhanced.

Computer controlled machines are then used in the manufacturing process to insure the highest levels of craftsmanship. Components are complete only after their surfaces have been ground, polished and smoothed. All cams, located inside the main frame, are divided into two sections allowing for easy adjustment and replacement.
Solid construction

- Model GTA net machines are designed for knitting heavy-duty netting. The most important characteristic of this type of net machine is the strength and durability. This basic requirement is satisfied by a sophisticated design, the careful selection of materials, and the precise manufacture of components. The end result is the highest quality net machines, assembled by skillful technicians.

Drive shaft

- The drive shaft is supported with two additional flange units. This improvement insures less deflection and vibration of the drive shaft.

Casting parts

- The strength of all cast parts including cams, lower hook stroke lever, and knot tightening lever is much improved. Nodular graphite cast iron (JIS #FCD500) having a tensile strength of higher than 50 kgf/mm² is used to make these parts. All cast parts undergo an annealing process.

Lower hook frame

- Hanging rods support the lower hook frame. This system results in a much less deflection of the frame without increasing its weight for greater rigidity. The life of the cams driving the lower hooks is prolonged.

Lower hook rail

- The lower hook rails of our Model GTA net machines with weft bobbins of 500mm have been reinforced, using a center rib over its whole length. This modification provides the necessary strength and rigidity required for proper performance.
Accurate adjustment

Sliding end covers
- End covers are designed to open wide and have casters, which provide easy movement. The sliding covers are convenient for inspection and maintenance of the net machine.

Auto-stop for warp
- The auto-stop system is changed from the mechanical contact method to the photo-ray method for more reliable functioning. When the breakage, loosening or tightening of individual twines are detected, the net machine stops.

Safety equipment
- A photo-ray system is installed that stops the machine when an operator happens to come too close to the lower hook frame in motion. This is a precautionary measure for the prevention of human injury.

Hydraulic generator
- Only Amita Model GTA’s employ a hydraulic generator. The hydraulic system controls vital functions such as the knot tightening brake. However, through using cylinders a variety of functions can be added. For example the warp rollers, shown below, can be lifted with no manual effort.

Single twine / double twine
- You can produce a wider selection of heavy duty netting from either single twine or double twines. The length of warp tension springs alternates between tall and short to allow for the largest possible top ring size.

Reed
- Reed driving cams are provided at both ends of our Model GTA net machines with weft bobbins of 500mm. The double cam mechanism insures that the reed moves smoothly and accurately in all directions.
Twine separator

- The twine separator insures the twine pulled by the lower hook travels along both sides of the shuttle. This device can avoid the formation of skipped mesh in netting. Special surface treatment is applied to the stainless steel (JIS #SUS304) twine separator for high durability.

Knot tightening brake

- The knot tightening brake uses two large discs to generate a very powerful braking force. The strength of the knot tightening brake is easily adjusted, and its wide range of force insures quality netting regardless of the twine being knit.

Shuttle support

- Shuttles are supported at two additional locations for better stability in positioning. The shuttle support swings, facilitating twine passage by reducing friction.

Net forwarding roller

- Net forwarding tension is made even and stronger by using a larger diameter net forwarding roller. Covering material has been changed providing a better result. Shown with optional take-up system with roller weight, ideal for heavier twines.

Upper hook

- Specifically constructed to insure the most suitable shape and design, these hooks are made of chromium-molybdenum steel (JIS #SCM435) using the lost wax casting method insuring long life.

Lower hook

- Lower hooks are made of drill rod steel (JIS #SK2) to insure high durability.
Shuttle

- The shuttles on our Model GTA have been computer designed to ensure optimal performance. Only the highest-grade materials are used in the production of these two piece shuttles (25mm pitch and greater). As a result, their life span is comparable to traditional one piece shuttles.

Cross section

Cross section of Model GTA showing path of twine and netting: WARP, WEFT, NETTING
Optional equipment

- **Untwisted mesh device:**
 This device produces netting sheets that are flat on one side. Switching between knitting standard mesh and untwisted mesh is easily done by changing the reed driving can and the upper hook rotating cam. Model GTA net machines can be designed to knit untwisted mesh, standard mesh, or both.

- **Large selvage mesh device:**
 Selvage meshes are uniformly produced slightly larger than normal mesh size. This facilitates the joining of netted sheets. Twine supply is adjustable.

 ![Flat side](image1) ![Knotted side](image2)

- **Selvage twiner:**
 This device passes a twine through selvage meshes. This twine is used as guide for passing a steel bar through the selvage meshes prior to stretching.

- **Resining system:**
 Sheets of netting are treated with resin as they flow out of the machine, insuring that the knots remain tight and uniform prior to stretching.

- **Net splitting device:**
 At locations where the netting sheet is to separated, knot formation is avoided by passing the warp twine through a hole in the reed that is lower than the usual holes. With this system the warp twine does not reach the upper hook to form a knot.

- **High net forwarding rollers:**
 This device, see below and left, allows for the convenient handling of bulky netting after resin treatment.

- **Take-up tension roller:**
 This device, located just prior to the net forwarding rollers, provides constant and uniform tension. Ideal for slippery or heavy twines.

- **Other devices**
 may be offered to meet your specific needs if requested.
Specifications

<table>
<thead>
<tr>
<th>Type</th>
<th>NEW 20 - 25</th>
<th>NEW 22 - 20</th>
<th>NEW 25 - 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of shuttles</td>
<td>250</td>
<td>235</td>
<td>208</td>
</tr>
<tr>
<td>Pitch</td>
<td>mm</td>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>Diameter of bobbin</td>
<td>mm</td>
<td>400</td>
<td>400</td>
</tr>
</tbody>
</table>

Applicable twine range

<table>
<thead>
<tr>
<th></th>
<th>P.E. twine (single)</th>
<th>P.E. braided cord single</th>
<th>P.E. braided cord double</th>
<th>nylon twine (single)</th>
<th>nylon braided cord single</th>
<th>nylon braided cord double</th>
<th>Mesh range (knot to knot)</th>
<th>Looming speed</th>
<th>Knot configuration</th>
<th>Main drive motor</th>
<th>Mesh forwarding motor (AC servo)</th>
<th>Hydraulic pump motor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>denier/ply</td>
<td>mm dia.</td>
<td>mm dia.</td>
<td>denier/ply</td>
<td>mm dia.</td>
<td>mm dia.</td>
<td>mm dia.</td>
<td>mm</td>
<td>rpm</td>
<td></td>
<td>kW</td>
<td>kW</td>
</tr>
<tr>
<td></td>
<td>400/12 ~ 400/54</td>
<td>1.0 ~ 3.0</td>
<td>0.7 ~ 2.0</td>
<td>210/24 ~ 210/108</td>
<td>1.0 ~ 3.0</td>
<td>0.7 ~ 2.0</td>
<td>16 ~ unlimited</td>
<td>up to 11</td>
<td>up to 11</td>
<td>kW</td>
<td>kW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>400/12 ~ 400/72</td>
<td>1.5 ~ 3.8</td>
<td>1.0 ~ 2.8</td>
<td>210/24 ~ 210/144</td>
<td>1.5 ~ 3.8</td>
<td>1.0 ~ 2.8</td>
<td>18 ~ unlimited</td>
<td>to 11</td>
<td>single</td>
<td>1 x 7.5</td>
<td>1 x 3.7</td>
<td>1 x 0.75</td>
</tr>
<tr>
<td></td>
<td>400/12 ~ 400/84</td>
<td>1.0 ~ 4.0</td>
<td>1.0 ~ 3.0</td>
<td>210/30 ~ 210/228</td>
<td>1.3 ~ 4.5</td>
<td>1.0 ~ 3.5</td>
<td>21 ~ unlimited</td>
<td>to 11</td>
<td>single</td>
<td>1 x 7.5</td>
<td>1 x 3.7</td>
<td>1 x 0.75</td>
</tr>
</tbody>
</table>

Mesh range (knot to knot) | mm | up to 11 | up to 11 | 15,000 | 17,000 | 50.8 |

Looming speed | rpm | up to 11 | up to 11 | 1 x 3.7 | 1 x 3.7 | 1 x 7.5 |

Knot configuration | single | single | single |

Main drive motor | kW | 1 x 7.5 | 1 x 3.7 | 1 x 7.5 | 1 x 7.5 | 1 x 7.5 |

Mesh forwarding motor (AC servo) | kW | 1 x 3.7 |

Hydraulic pump motor | kW | 1 x 0.75 |

Dimensions (l x w x h) | mm | 8,080 x 3,505 x 2,074 | 8,080 x 3,555 x 2,237 | 8,080 x 3,505 x 2,074 | 8,080 x 3,555 x 2,237 | 8,080 x 3,505 x 2,074 |

Weight net | kg | 11,000 | 15,000 | 17,000 | 17,000 | 17,000 |

Export packing size | m³ | 50.8 | 50.8 | 50.8 | 50.8 | 50.8 |

Type

<table>
<thead>
<tr>
<th></th>
<th>NEW 30 - 10</th>
<th>NEW 30 - 17</th>
<th>NEW 40 - 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of shuttles</td>
<td>106</td>
<td>170</td>
<td>128</td>
</tr>
<tr>
<td>Pitch</td>
<td>mm</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>Diameter of bobbin</td>
<td>mm</td>
<td>400</td>
<td>500</td>
</tr>
</tbody>
</table>

Applicable twine range

<table>
<thead>
<tr>
<th></th>
<th>P.E. twine (single)</th>
<th>P.E. braided cord single</th>
<th>P.E. braided cord double</th>
<th>nylon twine (single)</th>
<th>nylon braided cord single</th>
<th>nylon braided cord double</th>
<th>Mesh range (knot to knot)</th>
<th>Looming speed</th>
<th>Knot configuration</th>
<th>Main drive motor</th>
<th>Mesh forwarding motor (AC servo)</th>
<th>Hydraulic pump motor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>denier/ply</td>
<td>mm dia.</td>
<td>mm dia.</td>
<td>denier/ply</td>
<td>mm dia.</td>
<td>mm dia.</td>
<td>mm dia.</td>
<td>mm</td>
<td>rpm</td>
<td></td>
<td>kW</td>
<td>kW</td>
</tr>
<tr>
<td></td>
<td>400/24 ~ 400/300</td>
<td>1.8 ~ 6.0</td>
<td>1.3 ~ 5.0</td>
<td>210/45 ~ 210/600</td>
<td>1.8 ~ 6.0</td>
<td>1.3 ~ 5.0</td>
<td>25 ~ unlimited</td>
<td>up to 11</td>
<td>up to 11</td>
<td>kW</td>
<td>kW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>400/30 ~ 400/360</td>
<td>2.0 ~ 7.5</td>
<td>1.5 ~ 6.0</td>
<td>210/60 ~ 210/750</td>
<td>2.0 ~ 7.5</td>
<td>1.5 ~ 6.0</td>
<td>33 ~ unlimited</td>
<td>up to 11</td>
<td>up to 11</td>
<td>1 x 3.7</td>
<td>1 x 3.7</td>
<td>1 x 0.75</td>
</tr>
</tbody>
</table>

Mesh range (knot to knot) | mm | up to 11 | up to 11 | 15,000 | 17,000 | 50.8 |

Looming speed | rpm | up to 11 | up to 11 | 1 x 3.7 | 1 x 3.7 | 1 x 7.5 |

Knot configuration | single | single | single |

Main drive motor | kW | 1 x 7.5 |

Mesh forwarding motor (AC servo) | kW | 1 x 3.7 |

Hydraulic pump motor | kW | 1 x 0.75 |

Dimensions (l x w x h) | mm | 6,060 x 3,505 x 2,074 | 6,060 x 3,555 x 2,237 | 8,080 x 3,505 x 2,074 | 8,080 x 3,555 x 2,237 | 8,080 x 3,505 x 2,074 |

Weight net | kg | 11,000 | 15,000 | 17,000 | 17,000 | 17,000 |

Export packing size | m³ | 50.8 | 50.8 | 50.8 | 50.8 | 50.8 |

Type

<table>
<thead>
<tr>
<th></th>
<th>NEW 50 - 10</th>
<th>NEW 30 - 10D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of shuttles</td>
<td>104</td>
<td>106</td>
</tr>
<tr>
<td>Pitch</td>
<td>mm</td>
<td>50</td>
</tr>
<tr>
<td>Diameter of bobbin</td>
<td>mm</td>
<td>500</td>
</tr>
</tbody>
</table>

Applicable twine range

<table>
<thead>
<tr>
<th></th>
<th>P.E. twine (single)</th>
<th>P.E. braided cord single</th>
<th>P.E. braided cord double</th>
<th>nylon twine (single)</th>
<th>nylon braided cord single</th>
<th>nylon braided cord double</th>
<th>Mesh range (knot to knot)</th>
<th>Looming speed</th>
<th>Knot configuration</th>
<th>Main drive motor</th>
<th>Mesh forwarding motor (AC servo)</th>
<th>Hydraulic pump motor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>denier/ply</td>
<td>mm dia.</td>
<td>mm dia.</td>
<td>denier/ply</td>
<td>mm dia.</td>
<td>mm dia.</td>
<td>mm dia.</td>
<td>mm</td>
<td>rpm</td>
<td></td>
<td>kW</td>
<td>kW</td>
</tr>
<tr>
<td></td>
<td>400/90 ~ 400/648</td>
<td>3.5 ~ 10.0</td>
<td>2.0 ~ 6.5</td>
<td>210/210 ~ 210/1,600</td>
<td>3.5 ~ 10.0</td>
<td>2.0 ~ 7.5</td>
<td>45 ~ unlimited</td>
<td>up to 9</td>
<td>up to 10</td>
<td>kW</td>
<td>kW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>400/18 ~ 400/225</td>
<td>1.5 ~ 4.5</td>
<td>1.0 ~ 4.0</td>
<td>210/30 ~ 210/450</td>
<td>1.5 ~ 4.5</td>
<td>1.0 ~ 4.0</td>
<td>25 ~ unlimited</td>
<td>up to 10</td>
<td>double</td>
<td>1 x 7.5</td>
<td>1 x 3.7</td>
<td>1 x 0.75</td>
</tr>
</tbody>
</table>

Mesh range (knot to knot) | mm | 25 ~ unlimited |

Looming speed | rpm | up to 9 |

Knot configuration | single -- double |

Main drive motor | kW | 1 x 7.5 |

Mesh forwarding motor (AC servo) | kW | 1 x 3.7 |

Hydraulic pump motor | kW | 1 x 0.75 |

Dimensions (l x w x h) | mm | 8,080 x 3,505 x 2,237 | 6,060 x 3,505 x 2,074 |

Weight net | kg | 15,000 |

Export packing size | m³ | 50.8 |

Notes:
1. Minimum mesh size varies in relation to the operating speed and twine diameter.
2. P.E. and nylon twine ranges depict unknotted warp twine.
3. Looming speed varies in relation to mesh size and twine diameter.
4. Power supply is determined at the request of the buyer.
5. Machine weights and export packing size are estimates.
6. Creel pin arrangement is at buyer’s request.
7. All specifications are subject to change without notice.
Bobbin winders

- The Model B-2E and B-3E bobbin winding machines are designed for the high speed loading of bobbins for Amita Model GTA net machines. Capable of loading all types of twines and monafilaments, these winders substantially improve bobbin handling operations.

MAJOR FEATURES

- Precision engineered for long service.
- Bobbins do not expand during loading.
- Constant tension is maintained throughout loading.
- Service points are easily accessed for quick maintenance.

<table>
<thead>
<tr>
<th>Type</th>
<th>2E</th>
<th>3E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turnheads</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Applicable net machine</td>
<td>AMITA</td>
<td>GTA</td>
</tr>
<tr>
<td>Applicable twine range</td>
<td>Refer to net machine specifications.</td>
<td></td>
</tr>
<tr>
<td>Speed (1st-step) rpm</td>
<td>80 (50Hz), 96 (60Hz)</td>
<td></td>
</tr>
<tr>
<td>Speed (2nd-step) rpm</td>
<td>126 (50Hz), 156 (60Hz)</td>
<td></td>
</tr>
<tr>
<td>Speed (3rd-step) rpm</td>
<td>179 (50Hz), 214 (60Hz)</td>
<td></td>
</tr>
<tr>
<td>Main motor kW</td>
<td>2 x 0.2</td>
<td>3 x 0.2</td>
</tr>
<tr>
<td>Auxiliary motor kW</td>
<td>2 x 0.2</td>
<td>3 x 0.2</td>
</tr>
</tbody>
</table>

Notes: 1] Individual design for each bobbin diameter.
2] All specifications are subject to change without notice.